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MULTIOBJECTIVE OPTIMIZATION OF LOW-ENERGY
TRAJECTORIES USING OPTIMAL CONTROL ON DYNAMICAL

CHANNELS

Thomas M. Coffee,∗ Rodney L. Anderson,† Martin W. Lo‡

We introduce a computational method to design efficient low-energy trajectories by extract-
ing initial solutions from dynamical channels formed by invariant manifolds, and improv-
ing these solutions through variational optimal control. We consider trajectories connecting
two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method
leverages dynamical channels to generate a range of solutions, and approximates the Pareto
front for impulse and time of flight through a multiobjective optimization of these solutions
based on primer vector theory. We demonstrate the application of our method to a libration
orbit transfer in the Earth-Moon system.

INTRODUCTION

Orbit transfers accomplished using low-energy trajectories frequently exhibit significant trade-offs between

the required propulsive impulse (ΔV ) and required time of flight (TOF). Mission designers can benefit greatly

from knowledge of a range of efficient (non-dominated) options in the multiobjective minimization of ΔV
and TOF. The highly nonlinear dynamics that enable low-energy trajectories in multi-body gravitational mod-

els also pose challenges to identifying such a range of efficient options. The method described here generates

candidate solutions from dynamical channels formed by intersections of invariant manifolds of the initial and

target orbits in the circular restricted 3-body problem (CR3BP), and locally improves these solutions through

variational optimal control methods to construct an approximation to the Pareto front of efficient options.

Numerous studies have demonstrated the utility of dynamical channels1 as a tool for finding efficient tra-

jectories in the unstable nonlinear dynamical regions of the CR3BP. In particular, certain pairs of libration

orbits exhibit transfer trajectories with no deterministic maneuvers,1–3 and many pairs of mean motion reso-

nance orbits show evidence of transfer trajectories requiring only small propulsive maneuvers.4, 5 Moreover,

examinations of multiple efficient trajectories found by extensive search and numerical optimization indicate

a close correspondence with nearby dynamical channels.6–10;11

Several methods for trajectory design have employed invariant manifolds to find efficient solutions. Early

work explored transfers to libration point orbits using their stable manifolds,12 and applied Floquet theory to

optimize transfers between halo orbits of different energies in the same family.13 For trajectories to libration

point orbits, research has explored construction and optimization of transfers targeting stable manifolds, using

differential correction and constrained gradient optimization,14 thrust-limited tangent steering laws,15, 16 and

thrust-limited optimization by both direct17, 18 and indirect19 methods. To transfer between arbitrary unstable

periodic orbits connected by dynamical channels, several studies have used Poincaré sections to identify

desirable channels,20–25 and others have applied direct optimization methods to refine such solutions.26, 27

Other investigations for particular mission types have parameterized limited families of impulsive dynamical-

channel transfers with a small set of variables subject to numerical optimization.28, 29 Another recent approach

constructs transfers between invariant manifold segments selected according to a two-body heuristic criterion,

which can be likewise optimized according to a small number of parameters.30
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Our method leverages dynamical channels to explore the space of efficient low-energy solutions across

a wide range of the objective parameters. We introduce a global optimization procedure based on numeri-

cal continuation to search for intersecting segments of invariant manifolds propagated up to a desired TOF

bound. In examples of interest, the unstable and stable manifolds of initial and target orbits can form multiple

disconnected dynamical channels that offer different trade-offs between ΔV and TOF.1, 4, 20, 31, 32 Extracting

initial solutions from multiple such channels yields a dynamically motivated sample of trajectories distributed

across a region expected to lie near the ΔV -TOF Pareto front. The local multiobjective optimization of these

trajectories then yields an approximation to the Pareto front within the desired bounds.

For local optimization, we initially employ a fixed-TOF formulation of the indirect primer vector approach

to optimal control, originally developed by Lawden33 for two-body trajectory optimization. Prior investiga-

tions have applied this approach to both impulsive34, 35 and thrust-limited36–38 trajectories with three-body

dynamics. We follow the general strategy that the Apollo-era research of Lion & Handelsman39 and Jezewski

& Rozendaal40 developed to construct locally optimal impulsive transfers in the two-body problem. This

recursive procedure employs the time profile of the primer vector on a suboptimal trajectory to guide the

differential adjustment or addition of impulsive maneuvers to satisfy the necessary optimality conditions.

Starting from locally optimal fixed-TOF trajectories corresponding to the initial solutions generated from

dynamical channels, we construct nearby locally optimal trajectories by varying the TOF parameter while

retaining the desired optimality conditions. In the immediate neighborhood of the starting solutions, this

is accomplished using a variational form of the optimality conditions to guide the iterative computation of

nearby solutions. Outside an immediate neighborhood of each starting solution, further iterations of the

recursive procedure described above are necessary to retain local optimality; the requisite condition is the

same used by the original procedure to determine the adjustment of impulses based on the primer vector

profile. From each starting solution, we generate a sufficient set of nearby trajectories to fill the gaps between

starting solutions, and thus obtain an effective approximation to the desired Pareto front.

We demonstrate the application of our method to find efficient options for a libration point orbit transfer

in the Earth-Moon system. For clarity of illustration, we consider a planar transfer between Lyapunov orbits

about the L1 and L2 libration points, though the method is not limited to planar transfers. These two orbits

have differing values of Jacobi’s integral, so that no propulsion-free transfer exists between them in the

CR3BP. However, our method discovers a range of locally optimal impulsive transfer solutions that describe

the trade-off between ΔV and TOF.

METHODS

Our approach breaks down the search for efficient transfer trajectories into two stages: First, we construct a

set of approximate multiobjective minimizers of the transfer problem, each representing a dynamical channel

connecting the initial and target orbits (§). These solutions are found through a global optimization approach

based on numerical continuation (§). Second, we improve these solutions by an iterative process based on

local optimality conditions formulated in terms of primer vector theory (§). The resulting locally optimized

solutions are taken to approximate a portion of the globally efficient solution set.

Constructing Transfers from Dynamical Channels

The circular restricted 3-body problem (CR3BP) models the mutual gravitation of three bodies as point

masses, where the third body has negligible mass, and the primary and secondary bodies move in a circular

orbit about their gravitational barycenter. In applications, the third body typically represents a spacecraft or

small object, while the primary and secondary bodies typically represent a star-planet or planet-moon pair.

We choose a system of units and synodic rotating coordinates x, y, z so that:41 the secondary body has mass

μ and the primary has mass 1−μ; the primary is fixed at coordinates (−μ, 0) and the secondary at (1−μ, 0);
and the equations of the third body’s motion are given by
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ẍ− 2ẏ = ∂xΩ (1)

ÿ + 2ẋ = ∂yΩ (2)

z̈ = ∂zΩ, (3)

where ∂xΩ, ∂yΩ, ∂zΩ denote the derivatives with respect to x, y, z of

Ω(x, y, z) =
x2 + y2

2
+

1− μ

r1
+

μ

r2
+

μ(1− μ)

2
, (4)

with distances from the primary and secondary massive bodies to the third body given by

r1 =

√
(x+ μ)

2
+ y2 + z2 (5)

r2 =

√
(x− 1 + μ)

2
+ y2 + z2, (6)

respectively. The planar CR3BP (PCR3BP) is the restriction of the CR3BP to the plane z = 0.

In the above coordinates, the CR3BP has a first integral (conserved quantity) traditionally expressed as the

Jacobi integral
C = 2Ω− (

ẋ2 + ẏ2 + ż2
)
. (7)

The existence of the Jacobi integral implies that any trajectory of the third body lies on a 5-dimensional man-

ifold imbedded in 6-dimensional phase space. In the planar problem, each trajectory lies on a 3-dimensional

manifold imbedded in 4-dimensional phase space. Any transfer between orbits with different values of Ja-

cobi’s integral requires some propulsive impulse.

Unstable periodic orbits in the CR3BP have 2-dimensional invariant manifolds constituting those trajec-

tories that asymptotically converge to (stable manifold) and diverge from (unstable manifold) the periodic

orbit. The invariant manifolds of a periodic orbit represent all states reachable from the periodic orbit moving

backward and forward (respectively) in time with no propulsive maneuvers. When the stable manifold of one

periodic orbit intersects the unstable manifold of another periodic orbit, we term this connection a dynamical
channel from the second orbit to the first. If the two manifolds intersect in position space only, a trajectory

from one orbit to the another may be accomplished by a single propulsive maneuver at the intersection point,

cancelling the difference in velocity. If the two manifolds intersect in the full state space, there exists a

corresponding trajectory with no propulsive maneuvers.

Generating Solutions by Numerical Continuation

We construct candidate transfer solutions by searching for dynamical channels formed by the stable man-

ifold of the target orbit and the unstable manifold of the initial orbit. Describing each invariant manifold by

two free parameters, this search may be initially formulated as a four-dimensional global minimization of

the position-space distance between points on the manifolds (for smoothness, we use the squared Euclidean

norm). The highly nonlinear geometry of the invariant manifolds motivates a specialized approach to this

global optimization based on numerical continuation.

Invariant manifolds of a periodic orbit in the CR3BP have no effective global representation, either explicit

or implicit: rather, they are locally defined in relation to the orbit by the equations of motion. The manifolds

of an orbit can be approximated near the orbit by the linearized dynamics around the orbit, expressed by the

monodromy matrix. The eigendecomposition of this matrix indicates the local linear subspace tangent to the

manifold. The unstable subspace correspond to eigenvalues (Floquet multipliers) greater than one. Stable

manifolds may be identified as unstable manifolds of periodic orbits reversed in time. One can compute a

numerical approximation to the manifold by numerical integration of points in the local tangent space slightly

offset from the periodic orbit.
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Some efficiencies in the implementation of our approach depend upon an advantageous choice of parame-

ters to describe each invariant manifold. We generate the manifold from points lying on a linear segment of

the (one-dimensional) local tangent space near a given point on the periodic orbit, such that the two ends of

the segment are approximately connected by a trajectory near the manifold that winds around the manifold

exactly once. This ensures that the propagation of the entire segment constitutes an approximation to the

entire manifold, provided the entire segment is sufficiently close to the periodic orbit. When comparing times

of flight between two trajectory segments on the same manifold, the difference in offset is accounted for using

the linear approximation to the dynamics near the periodic orbit.

The two parameters describing each manifold approximation are thus the offset ε of the starting point along

the generating segment, and the integration time T with which the starting point is propagated. Denoting the

unstable manifold of the initial orbit by the superscript u and the stable manifold of the target orbit by the

superscript s, the set of combined approximate manifold segments is mapped by the four parameters εu, Tu,

εs, and T s. Variations in Tu and T s correspond to numerical integration of manifold segments in time, while

variations in εu and εs correspond to smooth variations of the segments in space.

The existence of a dynamical channel requires that the position components of the corresponding endpoints

of the two manifold segments are equal, that is, their difference is zero. Hence the set of such points is the

set of global minimizers of this difference in the four-parameter space describing the manifold segments, and

the search for dynamcial channels can be cast as a multivariate optimization problem in the residual. For

smoothness, we actually consider its squared Euclidean norm as the objective in the optimization.

Invariant manifolds in the CR3BP typically exhibit very large variations in curvature with respect to both ε
and T , which can lead to poor results for many common approaches to global optimization. Moreover, since

generic global optimization methods are generally constructed based on isolated independent function evalu-

ations, they fail to allow for the fact that the invariant manifolds are not globally defined, leading to computa-

tional inefficiencies. We thus propose a specialized optimization approach based on numerical continuation

that leverages the special structure of the problem and addresses its inherent computational challenges.

Given a solution to a system of ordinary differential equations with state variables u and scalar parameters

λ, and boundary conditions expressed in terms of these variables, consider the goal of describing the family

of solutions that results as one of the parameters λi is varied. In our approach, the system of differential equa-

tions is discretized by adaptive Gaussian orthogonal collocation to form an algebraic system approximating

the solution to the boundary value problem. The method of pseudo-arclength continuation? is used to vary the

solution according to the parameter λi: variables are incremented to as to approximate a constant step size in

the collocation’s combined extended variable-parameter space. Monitoring the Jacobians of the collocation

system allows the solution to detect and continue through folds (extrema) with respect to the parameter λi.

As the solution is continued in λi, the collocation mesh is adapted according to the curvature of the local

solution. In our application, the pseudo-arclength parameterization adapts manifold segments to changing

curvature with respect to ε, and the mesh refinement adapts the segments to changing curvature with respect

to T , as either parameter is varied. (The latter, combined with sparse linear solvers, may be considered to pro-

vide advantages analogous to those of variable step size numerical integration.) This approach thus provides

a globally adaptive representation of the segment solution sets for each manifold, addressing the principal

computational difficulties associated with these objects. Since each manifold’s parameters are independent

of each other, intelligent caching of intermediate results can allow relatively fast traversals throughout the

parameter space.

It is well known that multivariate local extrema can be isolated by the method of successive continuation:?

here a fold is first located with respect to parameter λ1; an extended system is formed to continue this fold

with respect to the parameter λ2, simultaneously varying λ1; and so on, until finding a fold with respect

to all the parameters λ. However, this method generally fails for global optimization: in particular, while

continuation in a single parameter traverses an unbounded sequence of folds, simultaneous continuation of

folds in multiple parameters will often traverse a closed loop in parameter space containing only a small

number of higher-order folds.
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Our approach to global optimization uses continuation of folds to leverage the information about local cur-

vature implicitly provided by the continuation process, thus adapting the search to the complicated geometric

structure of the manifolds; however, it applies a multi-layered form of successive continuation in order to

ensure a comprehensive exploration of the parameter space. Beginning from a starting point (ideally near the

center of the parameter space of interest), the procedure generates candidate multivariate minimizers through

a recursive process.

First, each parameter λi is assigned an integer layer bound bi; these are used to limit the recursion depth.

For the starting solution, each parameter λi is assigned an initial layer count ci = 0. For each parameter λi,

the solution is then continued in both directions with respect to λi alone, within the extent of the desired pa-

rameter space, locating folds in the objective function relative to λi; the resulting fold points are added to the

solutions set with ci = 1. For each solution in the solution set, the process is recursively repeated, continuing

and locating folds independently in each λi (except the immediately preceding one), and incrementing the

corresponding layer count ci. When the layer count ci reaches the layer bound bi, instead of continuing with

respect to subsequent parameters independently, the fold located with respect to λi is continued in multiple

parameters, thus following multivariate folds. In the end, all solutions are multivariate folds in all the λi,

having been effectively locally optimized by successive continuation.

This layered process adapts to the changing curvature of the solution space by everywhere following the

local structure of folds in the objective function, and branching to cover the space before closing in on local

extrema. Intuitively, folds in the objective with respect to λi at a given point in parameter space separate

intervals in which the objective is monotonic in λi; hence sampling on fold points effectively adapts to the

local smoothness of the objective function. Given particular layer bounds bi, all local extrema are located

that are reachable by following a sequence of folds from the starting point (including multivariate folds in

the final layer) that contain bi instances of λi. The necessary layer bounds depend on the difficulty of the

problem and the quality of results desired; for simple examples, we have found bi = 2 for all parameters to

be reasonably effective.

The complexity of the method may be loosely considered multiply exponential in the density of folds with

respect to each parameter λi, with the multipliers bi; however, since the density of folds varies across the pa-

rameter space, this characterization can be misleading. In the end, for given parameters, the method in some

sense adapts to the true complexity of the problem, with the bounds bi providing a means to temper unnec-

essary refinement. In addition, the method is easily parallelized, and the space complexity of the generated

solution set can be mitigated by detecting duplicate local extrema as they are located. Our implementation

makes use of the software package AUTO for continuation and bifurcation analysis of ordinary differential

equations.?

For our purposes, only solutions with zero objective value (position-space intersections of manifold seg-

ments) are considered, as they constitute true dynamical channels. Future work will investigate the possibility

of constructing candidate transfer solutions from near-intersections using multi-impulse adjoining arcs.

Improving Solutions by Optimal Control

To locally optimize candidate solutions generated by dynamical channels, we follow the general strategy

developed in the work of Lion & Handelsman39 and Jezewski & Rozendaal.40 Prior research has used a

similar strategy to locally optimize transfer trajectories connecting points on manifolds;35 in our approach,

we apply the optimization to the complete candidate solution generated from each dynamical channel, with

endpoints at the corresponding offsets from the initial and target periodic orbits, and an interior impulse at

the intersection of the manifold segments.

The primer vector refers to the vector of Lagrange multipliers corresponding to the velocity vector in a

standard optimal control formulation. A set of local optimality conditions on the trajectory may be stated in

terms of the primer vector:33

1. The primer vector and first derivative of the primer vector are continuous along the entire trajectory;

2. At each propulsive impulse, the primer vector lies in the direction of the impulse with unit magnitude;
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Figure 1: Effective sampling of invariant manifolds achieved by numerical continuation

3. Everywhere else on the trajectory, the primer vector magnitude does not exceed unity;

4. At each interior impulse, the first derivative of the magnitude of the primer vector is zero.

Given a reference solution, if the primer vector magnitude anywhere exceeds unity, the maximum improve-

ment, to first order, in the trajectory can be achieved by adding an interior impulse at the point at which the

primer vector magnitude is maximum, in the direction of the primer vector. The magnitude and timing of the

impulse can be subsequently adjusted by iterative root-finding in a small number of parameters to satisfy the

optimality conditions. The above procedure may then be iterated to produce a trajectory satisfying the local

optimality conditions.

RESULTS

As an illustrative example, we consider a planar transfer between two Lyapunov libration orbits about the

L1 and L2 Lagrange points (respectively) of the Earth-Moon system. These Lyapunov orbits are represen-

tative of orbits considered for libration point mission applications, and offer convenient transfers to orbits of

interest in the Earth and Moon neighborhoods. The initial orbit is an L1 Lyapunov orbit with Jacobi constant

C = 3.196, while the target orbit is an L2 Lyapunov orbit with Jacobi constant C = 3.178. As these two

constants are unequal, no nonpropulsive transfer exists between these two orbits.

Figure 1 shows portions of the unstable manifold of the L1 orbit and stable manifold of the L2 orbit in

the region of interest, each propagated out to roughly 4 weeks in duration. As it turns out, all efficient

transfers within this window have substantially lower time of flight; however, the geometry is illustrative of

the geometric complexity that may prove relevant in other transfer problems. The manifold segments shown

in Figure 1 indicate the adaptive sampling effectively achieved by the numerical continuation procedure.

Figure 2 makes visible the Pareto front of objective values achieved by the locally optimal trajectories

generated from our method. Some examples from the Pareto front are plotted in Figure 3. Several distinct

families of dynamical channels are evident, though the efficient trajectories with the lowest range of ΔV
(for instance, Figure 3(a) and (b)) all belong to a single family. A few isolated intersections allow transfers

with substantially lower TOF at a cost of greater ΔV (Figure 3(c) and (d)); these have a similar geometry,
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Figure 2: Portion of locally optimal transfer solutions generated
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Figure 3: (a-d) Sample efficient trajectories from the Pareto front with increasing ΔV and decreasing TOF
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Figure 4: An example trajectory (not Pareto-optimal) generated from different branch of dynamical channels

but transfer earlier to the faster-moving stable manifold of the target orbit. Other families of dynamical

channels produce transfers with substantially different geometry: for instance, Figure 4. While not efficient

in this example, other problems may exhibit contributions to the Pareto front from many such families; in

this situation, a global optimization approach like the one described here can be essential to developing a

comprehensive set of options for mission design.

CONCLUSION

We have described a two-stage method for constructing comprehensive multiobjective-optimal solutions

to low-energy orbit transfer problems, an important capability to support trajectory design for missions lever-

aging multi-body dynamics to reduce fuel requirements. A specialized adaptive approach to global optimiza-

tion is used to identify position-space intersections of invariant manifolds forming dynamical channels, from

which candidate solutions may be locally improved using optimal control to generate an approximation to the

Pareto front over parameter ranges of interest. The method is demonstrated to produce a considerable range

of potentially useful options in an example libration point orbit transfer application, and is easily extensible

to more complex problems involving any type of unstable periodic orbits.
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